Personal Autonomous Intelligence Computer

Hanqing Wu! Zile Yang? Jiahuan Zhang?> Dongbai Chen

1 1

Baoping Hao' Hao Zhang' Hongying Han '

Wenlin Fu' Kaicheng Yu!?

Abstract

In this position paper, we introduce a con-
cept of personal autonomous intelligence com-
puter (PAIC), to combine the advantage of two
mainstream intelligence systems, connectionism
and rule-based symbolism. Similar to a traditional
von Neumann architecture, our PAIC consists of
the input-output, memory, control, processing,
and storage Unit. PAIC not only removes the lim-
itation of the fix-length context window from the
large language model but also achieves multi-hop
reasoning-related precise manipulation of input
with a novel pipeline. We also argue that, with
the progressive increase of PAIC users on the In-
ternet, the data flow of the current Internet will be
reformed to achieve a decentralized local network.
Our project page is publicly accessible at https :
//github.com/KMind-Inc/PAIC

1. Introduction

Recent mainstream Al systems primarily utilize Large Lan-
guage Models (LLMs), exemplars of connectionism, for
their notable generalization capability (Xi et al., 2023). This
approach facilitates general intelligence in diverse fields
such as text-to-image generation (Kim et al., 2023; Ge et al.,
2023), tool-use (Qin et al., 2023; Patil et al., 2023), re-
search (Bran et al., 2023; Boiko et al., 2023), etc.

However, the connectionism paradigm fundamentally in-
volves a probabilistic model, inherently susceptible to er-
rors, notably the “hallucination” phenomenon (Xu et al.,
2023). In other words, due to the intrinsic structural design
of LLMs and their reliance on neural network architectures,
achieving precise data control solely through LLMs is inher-
ently insufficient. If we provide paragraph excerpts from the
classical English literature, Harry Potter and the Philoso-
pher’s Stone (Rowling, 2015), to the ChatGPT-4 (OpenAl,

"KMind Technology Co., Ltd., Hangzhou, China 2School
of Engineering, Autonomous Intelligence Lab, Westlake Uni-
versity, Hangzhou, China. Correspondence to: Kaicheng Yu
<kyu@westlake.edu.cn>.

2024), which is the state-of-the-art LLM-based Al system,
and repeatedly ask it the following question, “How many
words or phrases which indicate the Muggle characters are
directly and indirectly mentioned in the provided passage?
Please return a number only.”, Uit consistently failed to

provide the correct answer.

The complexity of this query stems from the necessity for
an Al system to first identify and comprehend the context
related to the “Muggle character” within the provided pas-
sage, in order to understand what the “Muggle character”
is. Subsequently, it is required to interpret the entirety of
the text to deduce which words or phrases align with the
definition of the “Muggle character”. Finally, following
the user specifications, “Please return a number only.”, it is
tasked with accurately enumerating the number of words or
phrases implying the “Muggle character”, and subsequently
relaying the cumulative count back to the user. This indi-
cates that the state-of-the-art LLM still struggles to precisely
understand and manipulate the fine-grained structure of data,
and we categorize it as Al Precision problem. To achieve the
capability of data manipulation with finer granularity, we
advocate for an Al system capable of multi-hop reasoning.
For this “Muggle” Counting problem which is multi-hop
reasoning-based, our system correctly identify all words or
phrases which directly or indirectly indicate the meaning of
the “Muggle character” 2

Conversely, the issue of hallucination is fundamentally non-
existent in the context of symbolic approaches. This is
because the reasoning capability of the symbolism is based
on explicitly set rules and logical operations (Zhang et al.,
2021). In other words, symbolic methods utilize powerful
declarative languages for knowledge representation, offer-
ing clear, interpretable reasoning processes (Zhang et al.,
2021). Nevertheless, the symbolism paradigm’s reliance

"Please refer to the Figure 7 from Appendix B for the complete
example. Note that an example including all the deductive clues,
one phrase (“Alice Qu”) directly and two words (“who”, “She”)
indirectly mentioning the Muggle character (“Alice Qu”), has also
been provided when prompting such systems, and the data-analysis
plug-in that explicitly designed to handle user-uploaded texts has
also been enabled.

2Please refer to the Figure 8 in Appendix B for a detailed
explanation.

Personal Autonomous Intelligence Computer

(b)Connectionism

~A @

(a)Symbolism

Q- -F-

Expert System 1

Q—) - -

Expert System 2

Qe - - —>A >Mil

- LLM Based

Expert System N

“Alg- 00 A

(c)Neuro-Symbolic

® Input / Output

i 5
——o | >(@® Memory -
1%
i {

There are 3
Muggles in the clip

How many Muggles "
are there in the clip?
PAIC

Figure 1. Paradigm of symbolism, connectionism and our neuro-symbolic solution. For the resolution of the multi-hop reasoning-
related queries, solutions can generally be categorized into three distinct paradigms, symbolism, connectionism, and neuro-symbolic: (a)
representatives of symbolism, expert system (Wang et al., 2022a), primarily relies on the construction of a series of hand-crafted rules to
facilitate reasoning in a specific case, hereby, lacking in generalizability; (b) quintessential embodiment of connectionism, Large Language
Model (LLM), exhibits robust generalization capability in general inferential problems but always suffers from the hallucination problem
(Xu et al., 2023), failing to generate the precise answer; (c) our solution, Personal Autonomous Intelligence Computer, composed of a set
of distinct units, takes full advantage of both the symbolism and the connectionism, large language model, forming the structure data
which contains the high-dimensional information, such as the knowledge graph to first translate an arbitrary user input into a verifiable
graph structure so to resolve uncertainty introduced by generative connectionism pipeline.

on a top-down, rule-based strategy limits its generalizabil-
ity, necessitating substantial manual adjustments to tailor
rules for diverse input scenarios. Hence, to attain a higher
precision in data manipulation capability, we propose our so-
lution, Personal Autonomous Intelligence Computer (PAIC),
integrating the strengths of connectionism’s generalization
capabilities with the precise data control offered by symbol-
ism.

As depicted in the middle block of the Figure 1(c), our PAIC
consists of common components in the Von Neumann Ar-
chitecture (Von Neumann, 1993). Compared to the early
approaches that only add an external memory unit to extend
the context window (Packer et al., 2023), our PAIC aims to
leverage a graph-driven approach to alleviate the hallucina-
tion. Specifically, we treat the large language model like
a central processing unit of a traditional computer and de-
compose the reasoning tasks into various sub-tasks to avoid
excessively using highly complex prompts. We then propose
a novel data pipeline, dehydration-verification-rehydration,
to realize a close-loop verification process to ensure the
correctness of our PAIC’s execution.

Besides, our PAIC is also characterized by customized stor-
age and user-defined capabilities. Specifically, deploying
our product in a cloud computing environment not only lib-
erates it from the fixed-length context window limitation of
LLMs but also provides expandable storage capacity. Fur-
thermore, unlike the domain-specific language models, we
aim to build an operating system, dubbed kOS, that con-
tains some common operations like parsing online content
of web pages and also supports user-defined ones to ease the
customization. To this end, we can easily reorganize these
operations into lightweight downstream applications.

As user numbers grow and considering our PAIC’s con-
tinuous online presence, we hypothesize that an evolving
network framework, building incrementally on current Inter-
net architecture, will gradually emerge. We dub this novel
network paradigm the Al Internet. More significantly, the
advent of the Al Internet implies that the paradigm of in-
formation dissemination may undergo alterations. Current
Internet architecture funnels a significant amount of data
to platforms providing information alignment services, as
evidenced by the growing preference for online shopping
companies like Amazon and Alibaba. These information-
matching service-offering platforms align a boarder range of
options with the user requirements, including some unique
information such as the off-price merchandise. Several
third-party platforms mandate their partner merchants to
provide the lowest prices exclusively on their platforms,
often resulting in artificially inflated prices on competing
platforms (Com, 2021; b, 2021; Sheng et al., 2021). In
essence, these platform companies monopolize a market
segment by controlling both demand and supply informa-
tion. In contrast, people can transmit their requests across
the Al Internet through their PAICs. Subsequently, other
PAICs possess the eligible answer will automatically reply
to those PAICs that broadcast requests. Hence, the data even-
tually flows towards the demands instead of the third-party
platform. In summary, our vision is:

* We propose an initial design structure of Personal Au-
tonomous Intelligence Computer (PAIC), taking full
advantage of the symbolism and connectionism, which
are characterised by supporting the precise operation
with multimodal data and the user-defined capability to
alleviate the current hallucination problem of current
generative models.

Personal Autonomous Intelligence Computer

* We hypothesize a new paradigm of the internet will
emerge with the growing number of our PAIC (or
equivalently other types of agent-based systems) users,
that the information will not inevitably flow to tech-
giants but decentralized local hosts. As such, it sheds
light on resolving the current data monopolization phe-
nomenon.

2. Personal Autonomous Intelligence
Computer (PAIC)

As mentioned above, with the aim of achieving precise
data manipulation, our solution is Personal Autonomous
Intelligence Computer (PAIC). This section will illustrate
how to accomplish this functionality built on the architecture
of our PAIC.

2.1. Architecture

Figure 2 illustrates that the PAIC architecture preserves the
core elements of the traditional Von Neumann architecture
(Von Neumann, 1993) rooted in the Turing Machine Model
(Turing et al., 1936). Specifically, PAIC is composed of:

Input-Output (I0) Unit. As the purpose of our PAIC
is to accurately understand and manipulate personal data,
we shall support various input sources, such as traditional
application (APP), Applet services, instant messager (IM)
and its modalities include text, audio, images and videos.
We also support a language user interface (LUI) which lever-
ages a customized langauge model to process arbitrary user
commands.

Control Unit. In our design, this unit serves as the ‘brain’
of the entire PAIC system. It comprises a Decision Maker
for task and strategy selection, an Evaluator for performance
assessment, and a Job Manager for task allocation, collec-
tively executing precise control in accordance with user
demands. Its internal design facilitates logical recursion,
mirroring the human problem-solving process.

Processing Unit. It primarily consists of the Language
Module and the Job Executor. The Job Executor is mainly
responsible for the task execution, which can also leverage
the external tools library to support arbitrary user-defined
operations. Note that, the Language Module can be called by
other units, for example, the IO Unit will use it to understand
and decompose the user’s language instruction input.

Tools Library. This unit mainly consists of external tools
with two features, an automatic tool learning approach with
Robotic Process Automation (Madakam et al., 2019) to
support cross-platform applications, and a zoo of predefined
tools pipeline, e.g. Photoshop and After Effects for photo
and video editing.

Memory Unit. Similar to a traditional computer, the mem-
ory unit is designed to store the content of an active ses-
sion when processing the user’s input command, including
the embedding of various input formats, like text, images,
videos and audio.

Storage Unit. Unlike the memory unit, this unit is per-
manent data storage, such as previous conversations, and
external uploaded data, so to let PAIC understand the user’s
patterns and preferences. Note that, the content of memory
and storage units can be updated accordingly with the help
of our processing unit.

2.2. kOS: An operating system for PAIC

An operating system (OS) is crucial for a computer, as it
bridges computer and software architectures, manages core
system functions, and facilitates user interaction and ap-
plication execution. (Wilkes & Needham, 1979; Unwana
et al., 2022). Similarly, we introduce, kOS, an operating
system developed on our PAIC architecture. By analogy
with the software and applications executed within the cur-
rent OSs, a novel concept, Action (ACT). In our kKOS, ACT
is a certain program to combines certain machine learning
operations with predefined logic to achieve certain func-
tions. We categorize such ACT into three kinds of levels:
native ACT, system ACT and customized ACT. Native ACT
(NACT), standing for the atomic functionalities of our PAIC
that are launched on kOS, NACT can thus be considered
kOS’s minimal execution unit, encapsulating the interac-
tion paradigm among PAIC components in line with their
essential functionalities. As illustrated by the Figure 3, it
is evident that both the System ACT (SACT) and the Cus-
tomized ACT (CACT) are implemented through a series of
logical combinations based on pre-encapsulated NACTs,
facilitating more complex capabilities.

Native ACT (NACT). NACT represents the smallest exe-
cutable unit within our kOS. It encapsulates collaborative
interactions among PAIC components, aligning with their
core functionalities. For example, according to the Fig-
ure 3, the invocation of NACT k_get_act_request() mainly
relies on the collaboration between the IO and Processing
Units, designed to decipher user intentions through query
deconstruction.

System ACT (SACT). SACT is executed using a series
of logical operations grounded in pre-encapsulated NACTs,
facilitating enhanced capabilities. Taking the SACT we-
blinkSummarise() as an example, it essentially hinges on
the NACT k_web_get_page_data() for obtaining the content
of the input web link, k_semantic_summarize() for synthe-
sizing the core concept of the input text, thereby, mainly
in charge of summarizing the core content from the input
web link. We illustrate the utilization example and code
implementation of this SACT in Figure 17 and Figure 18.

Personal Autonomous Intelligence Computer

Command Deconstrustion

N

Tools Library

[Tools Factory Automatic Tools Leaning] [Tools Zoo]
i i

Assign
(recursion)

!

Responce T

/ Task
| | Allocation Language Module
o feses sl Hoach i Database
| < * Decision- Prompt Template | save
Maker
| Response Response, —_—>

LLM

j<—
| “Read

Long Term
Memory

! ! v

Job Job

Job (Di

Control
Unit

Input / Output
Unit

Memory
Unit

AN .

Executor

(n)

Executor

)]

Executor

(1)

Ve . p

Private
Database

7

J -5

Processing
Unit

E

Job
\

Storage
Unit

Figure 2. Infrastructure Design of Personal Autonomous Intelligence Computer (PAIC)

System ACT Customized ACT
(webLinkSummarize) : (weblmageExtraction)
NACT, NACT, NACT; NACT, NACT, NACT, NACT,
kos T T
Native ACT
NACT, NACT, NACT, NACT, NACT, NACT,
PAIC k_get_act_request k_message_send k_web_get_page_data k_web_get_image_data k_semantic_summarize k_file_open
| 1 1
I I S Lk L X
! poE T S e N
e L R Y r ==L =t ry
1 LI + L L
2 VAR vV VvV Vv
Input / Output Memory Control Processing Storage
Architecture

Figure 3. Overview of PAIC and its operating system (kOS). Here,

we delineate the relationship between PAIC and kOS. Similar to a

traditional operating system, our kOS runs on top of PAIC to connect users’ requests with low-level functions. There are two layers of
kOS, Natice ACT that serves as basic operations and directly uses infrastructure units, and System ACT & Customized ACT which are

composed of native ACT.

Customized ACT (CACT). In essence, CACT can be
regarded as an extension of the SACT, typically imple-
mented by invoking the corresponding NACTs and SACTs
if necessary through a series of logical rules, thereby en-
abling more intelligent functions to meet personal require-
ments. Taking the CACT weblmageExtraction() from Fig-
ure 3 as an example, this CACT is to extract the images
from the input weblink, essentially relying on the NACT
k_web_get_Image_data()

Please refer to Appendix C for a detailed explanation of all
NACTSs and SACTs.

3. Data Manipulation

In order to delineate the process of the ultimate target of
our PAIC, data manipulation with finer granularity, more
comprehensively, this section will primarily dissect an ex-
ample. In our system, operable data objects are categorized
into four types: text, images, video, and audio. Note that,
we understand that processing arbitrary user input is nearly

impossible at this current state, so we set a limited context,
defined by our System ACT or Customized ACT, for the fol-
lowing manipulation procedure. We believe that processing
arbitrary language inputs given such limitations as desired
is possible.

In Figure 4, it is distinctly evident that the entire process
of the data manipulation is segmented into three phases
, Data Dehydration (DD), Data Structure Equilibrium
Recovery Recursion (DSERR), and Metadata Rehydra-
tion (MR). These three phases connected sequentially, DD
— DSERR — MR, defines a novel paradigm to accom-
plish data manipulation with finer granularity. In response
to this novel paradigm, we propose another novel compre-
hensive concept for measuring the overall performance, Al
Precision. Al Precision is fundamentally a composite evalu-
ation metric, which can be decomposed into the evaluation
metrics for both the DD and DSERR phase performance

3All these novel concepts are derived from the Three-Body
Problem (Liu & Liu, 1976), which are proposed to aid users in
better comprehending the essence of each phase.

Personal Autonomous Intelligence Computer

For the provided passage, under the condition that the original text is altered the least and logically,
changing the interaction between A and C to "have breakfast":

Provided Passage:

‘A is having dinner with B. B is chatting on the phone with C. C is chatting with A.’ g\

User Intention

"""" b @

C is chatting with A.

Data Structure Equilibrium ;
Recovery Recursion i Rehydration

f Metadata

Bis
C is having breakfast with A.

pengEen. ® A\ ® i
Ais B. &. A is planning dinner with B.
i C

(Paic)

A ‘Ais planning dinner with B. B is chatting on the phone with C. C is having breakfast with A, ’]

Figure 4. A novel paradigm for the precise data manipulation. A passage is converted to high-dimensional structure data first in the
Data Dehydration phase. The target edge and the target interaction obtained from the raw user query are input to the following phase,
forming the new structured data that destroyed its original equilibrium status. The new structured data will be recursively updated until it
returns to the equilibrium status. For the last phase, the input structured data in equilibrium will be converted back to the text.

measurement.

Additionally, all the concepts and notation utilized for the
later explanation are defined below:

Node. Within the scope of this paper, it can be divided
into the subject node and the object node. For example, “A
is having dinner with B.”, the subject node represents “A’;
the object node is “B”.

Target Edge. It is the edge that is directly relative to the
user query. Note that, some queries may contain more than
one target edge. Specifically, we use e%;;et to represent the
Target Edge from node 7 to node j.

Relevant Edge. It refers to all the edges connected to the
subject nodes and the object nodes of the “Target Edge”,
excluding the “Target Edge” itself. Similar to the definition
of the Target Edge, we use ep2. . to represent the Relevant
Edge from node 7 to node j.

Irrelevant edge. Conversely, all the other edges not de-
fined by the scope of the “Target Edge” and the “Relevant
Edge” are classified as the “Irrelevant Edge”.

Interaction. For example, “A is having dinner with B.”, the
interaction within the scope of this paper is “have dinner”.

3.1. Data Dehydration

Referring to the example shown from the Figure 4%, the
provided passage from the user query is ”A is having din-
ner with B. B is chatting on the phone with C. C is chat-
ting with A”. The key step of this phase is to generate the
high-dimensional structured data, which is a graph struc-

*You may also see Figure 6 in Appendix A for the complete
process and detailed explanation.

ture composed of the node and edge in our example. All
nodes contain a subject and its coordinates in the format
of “(sentence order, subject order in this sentence)”. All
edges encapsulate information, excluding node details, like
interactions between subjects and objects, auxiliary verbs,
main verbs, and prepositions. Note that, one node can be
the subject of one interaction or/ and the object of another
interaction. The node coordinate is stored only when the
node serves as the subject. All the edges are directional,
pointing from the subject to the object.

Additionally, if provided, the corresponding attribute infor-
mation for both the node and the edge will also be excavated.
For example, any information pertaining to the node, such as
basic background, relationships, categories, etc., will be doc-
umented. Similarly, the corresponding information relative
to the original text, such as the sentence tense, the main verb,
the auxiliary verb, the preposition, etc., will be recorded as
the edge information. Unlike many knowledge graphs tai-
lored for specific uses like relation extraction (Weston et al.,
2013; Riedel et al., 2013), semantic parsing (Berant et al.,
2013; Heck et al., 2013), and question-answering (Bordes
et al., 2014b;a), etc., our graph structure supports not only
a variety of tasks related to explicit or implicit relational
reasoning but also the reverse operation of complete original
text recovery.

In more complex scenarios involving image, video, or audio
data, the storage of high-dimensional structured data often
relies on the method employed for its generation, and may
require formats such as databases. Hence, a distinctly ev-
ident bottleneck is the capability of the high-dimensional
structured data generation. The greater the capability to gen-
erate high-dimensional structured data, the finer the gran-
ularity of the data available for subsequent operations. In
general, the approaches from the data mining area would

Personal Autonomous Intelligence Computer

be more suitable for this sort of problem (Shu & Ye, 2023).
Furthermore, proposing a suitable evaluation metric, such
as the information entropy-like metric, for measuring how
much information both the different and the same high-
dimensional structured data can contain is essential to find
out the optimal high-dimensional structured data. We leave
all these potential improvements in our future work.

3.2. Data Structure Equilibrium Recovery Recursion

The design of this phase is inspired by the reflection steps
undertaken by humans in the problem-solving process. The
most important step in this phase is to detect whether the
structured data is in equilibrium, which is undertaken by
the evaluator. More importantly, the criteria for achieving
equilibrium are defined based on the user’s query.

Following the example depicted by the Figure 4, the con-
dition for achieving equilibrium is the absence of logical
conflicts in both temporal and spatial dimensions.

C—A
Target

“Relevant Edge” contains the e 2 and the eZ;7C : there
aren’t any “Irrelevant Edge”. Furthermore, the target edge
and interaction identified in the preliminary step also serve
as inputs for the current phase. Hence, by replacing the orig-
inal interaction of the target edge with the target interaction
(“chatting with”—“having breakfast with”), the equilibrium
of the original structured data is disrupted. The following
step is to evaluate whether the current structured data is
in equilibrium. More specifically, all “Relevant Edges” are
evaluated by the Language Module from the Processing Unit
for potential temporal and spatial logical conflicts with the
“Target Edge”. All "Relevant Edges” exhibiting this type of
logical conflict, will be fed into the Language Module for
updating. Each of these “Relevant Edges” will be allocated
a set of reasonable interactions.

In our example, “Target Edge” set contains the e only;

In order to achieve the capability of data manipulation with
finer granularity, we also introduce a concept to quantify
the degree of disruption to the original text, counting the
number of words changed from the original text. Hence,
all the corresponding ‘“Relevant Edge” will be eventually
updated to an optimal “Edge” with the minimum number
of words changed from the original text. All these updated
“Edges” will then become the new “Target Edge” for the
next recursion. Similarly, they follow all the aforementioned
steps to update their own “Relevant Edges” exhibiting the

>For example, providing two sentences, “A is having dinner.”
and “A is having breakfast.”, the subject of both sentences is “A”.
The tense of both sentences is the simple present tense. The event
of the former sentence is “having dinner”, while, that of the later
one is “having breakfast”. Therefore, we define existing the logical
conflict between these two sentences in both temporal and spatial
dimensions because we all know it is impossible for the same
person to have dinner and breakfast at the same time.

same logical conflict. Note that, all the edges that had been
classified as the “Relevant Edge” will not be considered as
the “Relevant Edge” in the following process. The recur-
sion terminates only when no more “Relevant Edges” are
found that have temporal and spatial dimensional logical
conflicts with the current ”Target Edge”. At this point, the
resultant structured data can be regarded as returning to the
equilibrium status, which will be output to the final phase.

Based on the aforementioned description, it is not difficult to
observe that the equilibrium condition plays a pivotal role in
this phase. For this example, it mainly considers the logical
conflict in the temporal and spatial dimensionality. Cur-
rently, all the conditions are composed of handcrafted rules
according to the different applications. We emphasize that
this equilibrium condition is defined by the user’s defined
context. In the future, we propose to self-adaptively gener-
ate the equilibrium conditions via the user query, enhancing
the generalization capability of the evaluator.

3.3. Metadata Rehydration

This is the last phase of the data manipulation process, which
mainly focues on recovering the text from the structured data
in this example. As characteristics of such structure data, the
coordinates of all the subject nodes had been stored in the
DD phase. In addition, the rule for recovering the text from
the structured data has also been predefined according to
the user-provided passage. Therefore, all the raw sentences
from the original text can be easily retrieved via our PAIC
processing unit.

Our final answer is “A is planning dinner with B. B is chat-
ting on the phone with C. C is having breakfast with A”,
where the cost is 2 words changed. Given our example,
the answer from ChatGPT-4 as of January 8th, 2024, was
completely erroneous and lacked logical coherence, which
is shown by the Figure 13 in Appendix B. Additional testing
examples have also been provided for the same version of
the ChatGPT-4. None of the answers provided by ChatGPT-
4 is reasonable, which can be viewed from the Figure 14 and
Figure 15 in Appendix B as well. Later on, another more
challenging example related to four nodes is again fed to
the ChatGPT-4 and our PAIC. Referring to the Figure 11, it
is evident that ChatGPT-4 still fails to generate a reasonable
answer®. Conversely, PAIC’s answer seems more reason-
able, which can be viewed from the Figure 12 in Appendix
B.

ChatGPT-4’s answer: “A is having dinner with B. B is chatting
on the phone with C. C is chatting with A. D is having breakfast
with A. D is having dinner with C.” Obviously, “D” is impossible
to have dinner and breakfast at the same time, which is irrational.
Additionally, please refer to Appendix B for a detailed comparison
of the multi-hop reasoning-based information replacement task
between ChatGPT-4 and our PAIC

Personal Autonomous Intelligence Computer

3.4. Al Precision

We hypothesize that the composite concept, Al Precision,
for textual data, should combine metrics for the information
in structured data with those quantifying textual disruption
and provide an initial version. However, we believe there
exists much room for future improvement in this direction.

For the DD phase, the quality of the high-dimensional struc-
ture data directly determines the granularity of subsequent
operable data. The greater the amount of information encap-
sulated in this high-dimensional structured data, the finer
the granularity that can be achieved in data manipulation.
Hence, a metric capable of measuring the information en-
capsulated in this structured data can expedite the process
of identifying the optimal structured data configuration.

For the DSERR phase, in our example, we quantify textual
disruption by the most intuitive metric: the number of words
altered from the original text. We posit that undiscovered
metrics, considering factors like story logic rationality, nar-
rative arc integrity, inter-sentential correlation, and sentence
coherence, could enhance tasks involving insertion, deletion,
modification, and retrieval of textual data. Integrating these
undiscovered metrics enables a more comprehensive quan-
tification of textual disruption, vital for optimizing system
responses.

4. Al Internet: Connecting All The PAICs

We hypothesize that with the increasing number of PAIC
users in the current Internet space, the data flow will undergo
a subtle change. We start by discussing the issues of data
monopolization and privacy in modern Internet society, and
outline how personal Al devices, such as our PAIC, can help
with these concerns. We hope to shed light on a future where
the additional value of our personal data is not exploited by
tech giants, but instead returned to ourselves.

4.1. Data Monopolization and Data Privacy

Monopolization has become inevitable in the current struc-
ture of Internet society. As analyzing the entire Internet
involves unnecessary complexity, we construct a simplified
‘Internet’ in the left part of Figure 5. Each node either be
a shop or a customer. Imagine that one customer has a
simple request: ’buy a diaper at the lowest price’. To this
end, you need to inquire with all shops about the availability
of diapers and then request pricing information. As ordi-
nary individuals, we recognize that our time for this task
is limited. Therefore, the most efficient method involves
creating a super-node that aggregates all information from
each store-node, allowing the customer to interact solely
with the super-node. In reality, these super-nodes are the
tech giants possessing the computational capacity to process
all local nodes, thereby deriving profit either directly from

each query or indirectly through advertisement.

However, this paradigm might lead to several downsides
for customers. Firstly, although a single data record may
appear insignificant, the growing number of customers en-
ables these super-nodes to amass vast amounts of user-node
interactions, including browsing histories, purchase records,
and more. Furthermore, without resorting to selling this
data to third parties, these super-nodes can offer targeted
advertising services to commercial nodes such as the shop-
node, thereby generating significant profits. In reality, these
services constitute one of the most lucrative strategies em-
ployed by these giants. This phenomenon, characterized
by data flowing from the end-user to the super-node while
end-users seek useful information, is termed ‘user-seek-data’
principle.

4.2. The Reversal of the Information Paradigm

While the societal impact of data harvested by super-nodes
remains contentious, we explore an alternate outcome aris-
ing with the integration of personal computational de-
vices, like our Personal Autonomous Intelligence Comput-
ers (PAIC), into the Internet. Following the aforementioned
case, we argue that there might be two reasons why super-
nodes will inevitably emerge: i) in a graphical network, the
cost of broadcasting a request to the entire graph quadrat-
ically increases with the number of nodes; ii) each end-
node has limited computational resources to process such
large-scale data. In a traditional internet framework, each
customer node typically represents an individual using a
device such as a web browser, where manually comparing
prices and quality is evidently tedious. We conjecture that
this rationale underpins data monopolization. However, the
advent of generative large language models is likely to shift
this paradigm.

Envision a scenario where end-users, equipped with our per-
sonal autonomous intelligence computer (PAIC) or similar
devices capable of accurately understanding user requests,
could bypass the traditional sequential manual process. First,
with the parallel support of our PAIC, users can effortlessly
broadcast their requests to each shop node, enabling swift
execution and summarization of price comparisons. In ad-
dition, our PAIC offers a language user interface, allow-
ing end-user to customize their request. In this scenario,
by merely sending anonymous links, such as using a web
browser’s privacy mode to conceal digital footprints, users
can significantly ensure their data privacy. Consequently,
the optimal strategy for the super-node involves reporting
accurate prices. In this paradigm, the autonomous execution
of broadcasting and comparison allows data to flow directly
to users with minimal human intervention. Hence we dub
this ‘data-seek-user’ and this new paradigm Al Internet.

Personal Autonomous Intelligence Computer

& Super-node 2
& Customer B
= Shop /
PAIC =
S

Traditional Internet

B—&

B/\E

VAN

Al Internet

Figure 5. (Left) Traditional Internet. We formulate a small ‘Internet’ with three types of nodes, customer, shop and super-node. Assume
a customer has a purchase request, they need to manually go through (denoted with green arrow) either the shop with known addresses
or visit super-node who processes (denoted with purple arrow) the categories of many shops. As one person usually has limited time,
the most efficient approach is to visit the super-node as much as possible which inevitably leads to data monopolization. (Right) AI
Internet. However, if the customer is equipped with a personal computing device with the autonomous ability to browse the web, such as
our PAIC, they would only need to communicate with the PAIC while PAIC takes all the search and communication to the shop-nodes
given sufficient computational resources. In general, this leads to a paradigm that information flows towards a person with PAIC to largely

improve the efficiency of seeking information.
S. Literature Review

In this section we will introduce background knowledge
closely related to the implementation of PAIC.

5.1. Von Neumann Architecture

Until now, the development of digital computers has been
grounded in the Turing machine model (Turing, 1936). Tur-
ing introduced the stored program concept, wherein a Turing
machine’s description number serves as both storable data
and an executable program for a universal Turing machine.
Subsequently, John von Neumann was inspired by Turing’s
ideas and designed a structure that separated storage and
calculation in the EDVAC project (Von Neumann, 1945),
called the von Neumann architecture. It established the foun-
dational architecture of today’s manufacturable computers.
Today’s computers fundamentally embody the von Neu-
mann architecture. Similarly, our PAIC, which retains all
components of the von Neumann architecture, is evidently
a computer.

5.2. Operating System

The operating system, serving as the human-computer in-
terface, manages the allocation and scheduling of the com-
puter’s software and hardware resources (Bullynck, 2018;
Tanenbaum & Woodhull, 1997). It evolved from early sys-
tems based on punch cards and tapes, through the devel-
opment of mainframes and microcomputers, and gradually
transformed into modern graphical user interface operat-
ing systems such as Windows, Mac OS, and Linux (Field,
2022; MEI et al., 2022; Chakraborty, 2023). This entails
a continuous quest for an enhanced, user-friendly experi-
ence. Different from traditional operating systems, our kKOS
controls PAIC by triggering NACTs via human language,
enabling more natural computer interaction.

5.3. Large Language Model Based Reasoning

The growing intelligence in LLMs has increasingly focused
research on their use for complex reasoning tasks. A key
focus is on utilizing advanced prompting methods to re-
duce hallucination issues in LLMs (Wei et al., 2022; Wang
et al., 2022b; Liu et al., 2021; Petroni et al., 2019), etc. An-
other prevalent approach involves fine-tuning LL.Ms with
domain-specific data featuring similar characteristics (Hu
et al., 2023). Essentially, these works significantly increase
the probability of aligning LLM behaviour with human pref-
erences. Nevertheless, the phenomenon of hallucination
has yet to be eradicated. Hence, our PAIC employs the
core idea from the neuro-symbolic system to mitigate this
unavoidable issue.

5.4. Knowledge Graph

Knowledge graphs have shown efficacy in enhancing user
queries with relevant concepts, such as through Entity Query
Feature Expansion (EQFE), which enriches query infor-
mation using the query knowledge graph (Dalton et al.,
2014). Consequently, knowledge graphs have been demon-
strated to possess enhanced efficiency in search and retrieval
tasks, thereby yielding more accurate answers in informa-
tion retrieval-related endeavours, which is fundamentally
one of the representations of our proposed concept, high-
dimensional structured data.

6. Conclusion and Future Directions

In conclusion, we propose PAIC, defining a novel paradigm,
DD phase— DSERR phase — MR phase, which supports
the capability of multimodal data manipulation with finer
granularity. Al Precision, for evaluating the overall perfor-
mance of the task involving data manipulation based on
this new-style paradigm, is also proposed. More impor-

Personal Autonomous Intelligence Computer

tantly, each phase of this paradigm offers various research
opportunities, mainly including identifying optimal high-
dimensional structured data in the DD phase, adaptively
establishing equilibrium conditions for any user query in the
DSERR phase, and generating recovery rules in response to
random user queries in the MR phase. We believe that these
research topics hold instructive significance for the future
design of more advanced Al systems.

Apart from that, we also propose an operating system built
on our PAIC, kOS. We define the minimum execution unit
of kOS, Native ACT, which encapsulates the interaction
paradigm among PAIC components, aligning with their
essential functionalities. Furthermore, kOS also supports
the user-defined capabilities. Users can create their own
ACTs, Customized ACTs, by invoking a series of NACTs
to meet their specific requirements.

We hypothesize that the Al Internet will gradually evolve in
tandem with the increasing number of PAIC users. In the
future, Al Internet will be a decentralized network where in-
formation will no longer be tilted towards giants. Hopefully,
this can provide a promising way to alleviate the issue of
data monopolization.

References

Competitive effects of price parity agreements, Nov 2021.
URL https://www.compasslexecon.com/
the-analysis/competitive-effects-of-
price—-parity—-agreement/11-15-2021/.

Price parity clauses and digital platforms: the
rocky path to much needed clarity, March 2021.
URL https://www.linklaters.com/en/
insights/blogs/linkingcompetition/
2021 /march/price-parity-clauses—and-
digital-platforms-the-rocky-path-to-
much-needed-clarity.

English news and easy articles for students of

englisha024, Jan2024. U RL.

Berant, J., Chou, A., Frostig, R., and Liang, P. Semantic
parsing on freebase from question-answer pairs. In Pro-
ceedings of the 2013 conference on empirical methods in
natural language processing, pp. 1533-1544, 2013.

Boiko, D. A., MacKnight, R., and Gomes, G. Emergent au-
tonomous scientific research capabilities of large language
models. arXiv preprint arXiv:2304.05332, 2023.

Bordes, A., Chopra, S., and Weston, J.
swering with subgraph embeddings.
arXiv:1406.3676, 2014a.

Question an-
arXiv preprint

Bordes, A., Weston, J., and Usunier, N. Open question

answering with weakly supervised embedding models. In
Machine Learning and Knowledge Discovery in Databases:
European Conference, ECML PKDD 2014, Nancy, France,
September 15-19, 2014. Proceedings, Part I 14, pp. 165—
180. Springer, 2014b.

Bran, A. M., Cox, S., White, A. D., and Schwaller, P. Chem-
crow: Augmenting large-language models with chemistry
tools. arXiv preprint arXiv:2304.05376, 2023.

Bullynck, M. What is an operating system? a historical
investigation (1954-1964). Reflections on programming
systems: Historical and philosophical aspects, pp. 49-79,
2018.

Chakraborty, P. Operating Systems: Evolutionary Concepts
and Modern Design Principles. CRC Press, 2023.

Dalton, J., Dietz, L., and Allan, J. Entity query feature
expansion using knowledge base links. In Proceedings
of the 37th International ACM SIGIR Conference on Re-
search & Development in Information Retrieval, SIGIR
14, pp. 365-374, New York, NY, USA, 2014. Associa-
tion for Computing Machinery. ISBN 9781450322577.
10.1145/2600428.2609628. URL https://doi.org/
10.1145/2600428.2609628.

Field, C. Complete history of the operating sys-
tem, December 2022. URL https://history-
computer.com/complete-history-of-the-
operating-system/. Accessed: 2024-01-10.

Ge, S., Park, T., Zhu, J.-Y., and Huang, J.-B. Expressive
text-to-image generation with rich text. In Proceedings
of the IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 7545-7556, October 2023.

Heck, L., Hakkani-Tiir, D., and Tur, G. Leveraging knowl-
edge graphs for web-scale unsupervised semantic parsing.
In Proceedings of INTERSPEECH, 2013.

Hu, Z., Lan, Y., Wang, L., Xu, W, Lim, E.-P,, Lee, R. K.-W.,
Bing, L., and Poria, S. Llm-adapters: An adapter family
for parameter-efficient fine-tuning of large language models.
arXiv preprint arXiv:2304.01933, 2023.

Kim, Y., Lee, J., Kim, J.-H., Ha, J.-W., and Zhu, J.-Y. Dense
text-to-image generation with attention modulation. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 7701-7711, October 2023.

Liu, C. and Liu, K. The three-body problem / Cixin Liu. Tor
Books, New York, 1976.

Liu, J., Liu, A., Lu, X., Welleck, S., West, P., Bras,
R. L., Choi, Y., and Hajishirzi, H. Generated knowledge
prompting for commonsense reasoning. arXiv preprint
arXiv:2110.08387, 2021.

Personal Autonomous Intelligence Computer

Madakam, S., Holmukhe, R. M., and Jaiswal, D. K. The
future digital work force: robotic process automation (rpa).
JISTEM-Journal of Information Systems and Technology
Management, 16, 2019.

MEIL H., CAO, D., and XIE, T. Ubiquitous operating system:
Toward the blue ocean of human-cyber-physical ternary
ubiquitous computing mei. Bulletin of Chinese Academy of
Sciences (Chinese Version), 37(1):30-37, 2022.

OpenAl. Chatgpt (4). Large language model, 2024. URL
https://chat.openai.com.

Packer, C., Fang, V., Patil, S. G., Lin, K., Wooders, S., and
Gonzalez, J. E. Memgpt: Towards 1lms as operating systems.
arXiv preprint arXiv:2310.08560, 2023.

Patil, S. G., Zhang, T., Wang, X., and Gonzalez, J. E. Gorilla:
Large language model connected with massive apis. arXiv
preprint arXiv:2305.15334, 2023.

Petroni, F., Rocktischel, T., Lewis, P., Bakhtin, A., Wu, Y.,
Miller, A. H., and Riedel, S. Language models as knowledge
bases? arXiv preprint arXiv:1909.01066, 2019.

Qin, Y., Liang, S., Ye, Y., Zhu, K., Yan, L., Lu, Y., Lin, Y.,
Cong, X., Tang, X., Qian, B., et al. Toolllm: Facilitating
large language models to master 16000+ real-world apis.
arXiv preprint arXiv:2307.16789, 2023.

Riedel, S., Yao, L., McCallum, A., and Marlin, B. M. Re-
lation extraction with matrix factorization and universal
schemas. In Proceedings of the 2013 conference of the
North American chapter of the association for computa-

tional linguistics: human language technologies, pp. 74-84,
2013.

Rowling, J. K. Harry Potter and the philosopher’s stone,
volume 1. Bloomsbury Publishing, 2015.

Sheng, W., Lee, E., Sheng, W., and Lee, E. What
is ’forced exclusivity’? and why did it get al-
ibaba fined $2.8 billion?, Jun 2021. URL
https://technode.com/2021/04/15/what-
is-forced-exclusivity-and-why-did-it-
get-alibaba-fined-2-8-billion/.

Shu, X. and Ye, Y. Knowledge discovery: Methods from
data mining and machine learning. Social Science Research,
110:102817, 2023.

Tanenbaum, A. S. and Woodhull, A. S. Operating systems:
design and implementation, volume 68. Prentice Hall En-
glewood Cliffs, 1997.

Turing, A. Turing machine. Proc London Math Soc, 242:
230-265, 1936.

Turing, A. M. et al. On computable numbers, with an

10

application to the entscheidungsproblem. J. of Math, 58
(345-363):5, 1936.

Unwana, T. E., Udoh, E. I., and Umoh, V. O. A study of the
importance of operating system (0s) in a computer system.
2022.

Von Neumann, J. First draft of a report on the ed-
vac, 30 june 1945. Moore School of Electrical En-
gineering, University of Pennsylvania, Philadelphia, PA,
USA. Available online: https://library. si. edu/digital-
library/book/firstdraftofrepoOOvonn (accessed on 1 October
2022), 1945.

Von Neumann, J. First draft of a report on the edvac. IEEE
Annals of the History of Computing, 15(4):27-75, 1993.

Wang, W., Yang, Y., and Wu, F. Towards data-and
knowledge-driven artificial intelligence: A survey on neuro-
symbolic computing. arXiv preprint arXiv:2210.15889,
2022a.

Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang,
S., Chowdhery, A., and Zhou, D. Self-consistency improves
chain of thought reasoning in language models. arXiv
preprint arXiv:2203.11171, 2022b.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824-24837,
2022.

Weston, J., Bordes, A., Yakhnenko, O., and Usunier,
N. Connecting language and knowledge bases with em-
bedding models for relation extraction. arXiv preprint
arXiv:1307.7973, 2013.

Wilkes, M. V. and Needham, R. M. The cambridge cap
computer and its operating system. 1979.

Wu, C. Journey to the West. People’s Publishing House,
1980.

Xi, Z., Chen, W., Guo, X., He, W., Ding, Y., Hong, B.,
Zhang, M., Wang, J., Jin, S., Zhou, E., et al. The rise and
potential of large language model based agents: A survey.
arXiv preprint arXiv:2309.07864, 2023.

Xu, W., Agrawal, S., Briakou, E., Martindale, M. J., and
Carpuat, M. Understanding and detecting hallucinations in
neural machine translation via model introspection. Trans-

actions of the Association for Computational Linguistics,
11:546-564, 2023.

Zhang, J., Chen, B., Zhang, L., Ke, X., and Ding, H. Neu-
ral, symbolic and neural-symbolic reasoning on knowledge
graphs. Al Open, 2:14-35, 2021.

Personal Autonomous Intelligence Computer

A. Complete Data Manipulation Process

Target Edge :
Target Interaction : have breakfast

I I

Replacing “chatting_ with” with “having_breakfast_with”

s N\ o\ o\ T
(B) (A) (B) femmmamem} A) (B) [} A
e/ & \ea/ N o/ N \po/
/ A
Provided Passage: N >
&
"A B. —_— o o
B C.
C is chatting with A."
= —~ ~3
((c) (cy
e/ \es/
Update
Data Dehydration
if not existing th Count the number of words changed as
Not Exist i no! elxxl:ilr:‘fgllic : the cost of evaluating the degree of
) o . . . oglga disruption to the original text &
conflict*: conflict in time and space dimensionalities between two edges o e“’é‘i’e” 4 Update the new target edge with the
slevantiEdgesian optimal answer at the minimum cost
Target Edge
(T S Exist
,/ B \ ‘//;\\‘ Record all the Relevant Edges that
Q 0) o o,/ logically conflict* with the Target Edge ;
2 N2 oy
Retrieve all the corresponding sentences l CollsctithielmadifiedIRslevantiEdgs |
Modified Passage: that need to be modified via the data Not Exist
. . .) coordinates in the original passage
"Ais planning dinner with B. < ff existing the

logical conflict*
between
Modified Relevant
Edge and
Target Edge.

C.
C is having_breakfast_with A."

Language Module

@0/ Modified Relevant Edge:
H “Ais planning dinner with B”
T

Data Structure Equilibrium Recovery Recursion

Figure 6. Data Manipulation Process for the information replacement task. The operable data object and the user intention were extracted
from the preliminary step, thereby, obtaining the “Target Edge”, eﬁr‘g’ef, “Target Interaction”, “have breakfast”, and the original text,
“A is having dinner with B. B is chatting on the phone with C. C is chatting with A.”. When all parameters are ready, the first step is
to trigger the Data Dehydration phase, extracting the high-dimensional structured data which encompasses the complete information

from the original text. The next step is to replace the original interaction “is chatting with” of the “Target Edge”, eTCafg’efl, with the “Target

Interaction”, “is having breakfast with”, in order to meet the user requirement (The hidden step, not explicitly shown, involves using
the Language Module to convert “have breakfast” into “is having breakfast with”, retaining most of the original interaction’s words.).
With the establishment of the new “Target Edge”, eTCafg’efl, the balance of the original structure is disrupted, entering the Data Structure
Equilibrium Recovery Recursion phase. All the “Relevant Edges” will then be stored first. As long as any one of them contains a
conflict in the temporal and spatial domain with the “Target Edge”, the Language Module will be employed to recursively generate a
set of new “Interactions”, where all of them can objectively coexist with that of the “Target Edge”. In our system, we only generate
ten reasonable answers for each “Interaction” needed to be modified. All updated “Relevant Edges” will then be updated to the new
“Target Edge”. In the next iteration, these new “Target Edges” will will search for any of their “Relevant Edges” that contain temporal and
spatial logical conflicts with themselves. The aforementioned steps will be recursively performed until the stop condition is met, where
no temporal or spatial logical conflicts exist between the current “Target Edge” and any of its “Relevant Edges”. Upon satisfying the
stop condition, the structured data is considered to have returned to equilibrium. Therefore, as the structured data reattains equilibrium,

Metadata Rehydration phase is triggered. The high-dimensional structured data input will be reconverted into text.

11

Personal Autonomous Intelligence Computer

B. ChatGPT-4’s Responses Versus PAIC’s Responses for the Multi-Hop Reasoning-Based
Information Retrieval Task

This section mainly describes the ChatGPT-4 and our PAIC performance on the multi-hop reasoning-based information
retrieval task. We provide two excerpts from the English literature, Harry Potter and the Philosopher’s Stone (Rowling,
2015), and the Chinese literature, Journey to The West (Wu, 1980).

As illustrated by the Figure 7, it is obvious that the ChatGPT-4 equipped with the data analysis plugin only considers most
of the word or phrase directly indicating the meaning of the "Muggle character’. A majority of the pronouns such as ke,
We, You, are ignored. By contrast, as mentioned previously, our PAIC extracts the high-dimensional structure data from the
provided text. This high-dimensional structure data is derived from the interconnection of all sentence-based node-edge
graphs. Each node-edge graph encompasses the complete information of the corresponding sentence. Therefore, all words
or phrases directly and indirectly conveying the “Muggle character’’s meaning can be easily retrieved via the classical graph
traversal algorithm, such as breadth-first search, depth-first search, etc. Our PAIC correctly answers this “Muggle” Counting
problem, which can be viewed from the Figure 8.

Similarly, when dealing with the “Wukong” Counting problem derived from an excerpt of Journey to The West(Wu, 1980),
as depicted by the Figure 9, ChatGPT-4 successfully detects all the nickname (“XingZhe”) of “Wukong”, and the partial
pronouns indirectly implying the meaning of “Wukong”. In comparison with the answer of our PAIC which is shown by the
Figure 10, the high-dimensional structured data is again extracted from the provided text. Thereby, the operable granularity
of the text data has achieved a finer level, ending up with a correct answer to this “Wukong” Counting problem.

12

Personal Autonomous Intelligence Computer

Prompt: How many words or phrases which indicate the Muggle characters are directly and indirectly mentioned in the provided
passage? Please return a number only.

Provided Passage:

"Where was I?" said Hagrid, but at that moment, -, still ashen-faced but looking very angry, moved into the firelight.

"He’s not going," he said.

Hagrid, the teacher from the Magic School, grunted.

"Id like to see how a- like you stop him," Hagrid replied.

"A what?" said Harry, interested.

"A Muggle," said Hagrid. "It's what we call non-magic folk Iike-. And it’s your bad luck you grew up in a family full of Muggles,
except you and your parents"

"We swore when we took him in we’d put a stop to that rubbish," said -, "swore we’d stamp it out of him! Wizard, indeed!"
"You knew?" said . "You knew I'm a — a wizard?"

"Knew!" shrieked , in her husband-‘s arms, suddenly. "Knew! Of course we knew! How could you not be, my
dratted sister being what she was? Oh, she got a letter just like that and disappeared off to that — that school — and came home
every holiday with her pockets full of frog-spawn, turning teacups into rats. | was the only one who saw her for what she was —a
freak! But fori an , oh no, it was Lily this and Lily that, they were proud of having a witch in the family!"

For example:
Provided Passage:
"Alice Qu is a lady who is in the white dress. She seems a bit weird."

Assume:
"Alice Qu" is a Muggle character inferred from the previous context.
Explanation:

For the provided text, the Muggle character "Alice Qu" is directly and indirectly
mentioned three times in total by the phrase ("Alice Qu"), and two words ("who", "She").
Final Output:

"Three"

ChatGPT-4 (25/1/2024) :
The provided passage contains words and phrases indicating the Muggle characters directly and indirectly a total of eight times.

These are:

direct)
and- (indirect, referring to Petunia's and Lily's parents who are Muggles)

Final Output: "Night"

Final answer: 9(1x, 8V) Ground truth: 24

. J

Figure 7. ChatGPT-4’s Answer to “Muggle” Counting Problem derived from an excerpt of Harry Potter and the Philosopher’s
Stone(Rowling, 2015). The parts in red font are the ground true answers describing the word or phrase directly and indirectly im-

plying the meaning of the "Muggle character’. _ are the answers output by ChatGPT-4.

13

Personal Autonomous Intelligence Computer

4)
How many words or phrases which indicate the Muggle characters are directly and indirectly
mentioned in the provided passage? Please return a number only.

Provided Passage:

"Where was |1?" said Hagrid, but at that moment, Vernon, still ashen-faced but looking very
angry, moved into the firelight.

"He’s not going," he said.

Hagrid, the teacher from the Magic School, grunted.

"I'd like to see how a Muggle like you stop him," Hagrid replied.

"A what?" said Harry, interested.

"A Muggle," said Hagrid. "It's what we call non-magic folk like them. And it's your bad luck
you grew up in a family full of Muggles, except you and your parents"

"We swore when we took him in we’d put a stop to that rubbish," said VVernon, "swore we’d
stamp it out of him! Wizard, indeed!"

"You knew?" said Harry. "You knew I'm a — a wizard?"

"Knew!" shrieked Aunt Petunia, in her husband Vernon's arms, suddenly. "Knew! Of course
we knew! How could you not be, my dratted sister being what she was? Oh, she got a letter
just like that and disappeared off to that — that school — and came home every holiday with
her pockets full of frog-spawn, turning teacups into rats. | was the only one who saw her for
what she was — a freak! But for my mother and father, oh no, it was Lily this and Lily that,

they were proud of having a witch in the family!" -
_ J\/@
<

24

Figure 8. PAIC’s Answer to “Muggle” Counting Problem derived from an excerpt of Harry Potter and the Philosopher’s Stone(Rowling,
2015).

14

Personal Autonomous Intelligence Computer

Prompt: How many words or phrases such as nouns, pronouns, etc., which indicate the character "1EZ" are directly and indirectly
mentioned in the provided passage? Please follow the format of the given example and output a number with your explanation.
Provided Passage:

MHBMETAIRT e RS “ROMERNAS, RODERNES, REMRSEMLRG, HEBIE, BrEaRE.
BRI THEITEE, 07 ARE, O RERR SR, (i, (st N, KT EEH

&, SR RUXE, AR T RS AWE: ARE, REEARN GeE: IR B8, EEr—n
;ﬁfgﬁﬁ? KALE: IREBIEE, EERE, RS\, EARE, el TR, M, ZIE8E

AREEREE, BIafE T =5/, J\A. DR, WEE: W, FRnUSEEEARE. “/\iE: B4R! XM
HAUEABR! W7, NAESSE! hFIRRE LT EXEAN, BAETHIER, WWW%W%D%&',UE! =
& MRTEU T IRA). FDMEARERESR, ~EIE: 85, (REAMTR, BHEE? Gaa: EINEEsL
B, BAME? "ZREE: (REELERTT? B HA=: BANELEE, BSELRFANE, BE=S1M, HE
IFFEL, RK— %, 5 . T=RE: WENTE? aEE: RE=H. "=EE: B,
KRG, SF=A2ZR. ZAERER; E=RZIME, RHSHEILET. & 8dn, B, "

(REMSEERAR, HITEEAE: SeEms, BmEmE. FAIEFERERITR, BARKSHAR, FaXit, &
T, EMESAREN, SIS RRREE.

For example:
Provided Passage:

"B RORBEIR,

Explanation:
For the provided text, the character "[EZS" is directly and indirectly mentioned two times in total by the phrase (directly mention: "
1BZ="), and a word (indirectly mention: "¥").

Final Output:
"Two"

ChatGPT-4 (6/2/2024) :
In the provided passage, the character "{& %" is mentioned several times, both directly and indirectly. To analyze this, | will identify
instances where "5 %=" is referred to either by name or by pronouns and other phrases that clearly denote this character.

Direct Mentions:

" - This is a term often used to refer to Sun Wukong (1& %) in the context of "Journey to the West."
" - Again, refers to Sun Wukong.

" - Another mention of Sun Wukong.

" - Yet another reference to Sun Wukong.

" - Continued reference to Sun Wukong.

" - This is a direct mention of Sun Wukong by name.

" - Another mention of Sun Wukong.

" - A further reference to Sun Wukong.

" - Another instance referring to Sun Wukong.

" - A self-reference by Sun Wukong, as he often calls himself "Old Sun" in the text.

Indirect Mentions:
"FK" - Used by Sun Wukong referring to himself.
"JX" - Another self-reference by Sun Wukong.
"FR" - A further self-reference by Sun Wukong.
"FX" - Another instance where Sun Wukong refers to himself.
"F" - Sun Wukong referring to himself again.

Adding these up, there are a total of 15 mentions of the character "{&%5" (10 direct and 5 indirect) in the provided passage.

Final Output: "Fifteen"

Final answer: 15(15V) Ground truth: 35
G J

Figure 9. ChatGPT-4’s Answer to “Wukong” Counting Problem derived from an excerpt of Journey to The West(Wu, 1980). The parts
in red font are the ground true answers describing the word or phrase directly and indirectly implying the meaning of the “Wukong”.

_ are the answers output by ChatGPT-4.

15

Personal Autonomous Intelligence Computer

How many words or phrases such as nouns, pronouns, etc., which indicate the character
"f§Z=' are directly and indirectly mentioned in the provided passage? Please follow the
format of the given example and output a number with your explanation.

Provided Passage:

MEEETT AU RETEE: “REMBRNAE, REEBIRNREE, RERSHEMAL
Hly, Y\EHEEB, MABET. HEFRHRIFER, WTFEM#E, BOREERASTEN,
IFEFRE, "TEEE: IRIXEE, WIRTH! BT, AERE! BiRXiE, a8
TIFER? "AE: FFEE, REEERM! TEE: RETRITR, BEMF—EEN
WE? "RAE: FEBLEE, ERRE, BREIR\FAR, FARB. TEE: FMIE.
BT tefi], EREBRIFER. 7

KRRIEEAR, BDAsMRA T =5, J\Ak. W&, MEE: ImR, RRSEREAR
i, ")\miE: “BEAR! XU EEABR! W7, NaESGE! hFNEREUEE,
EFERERN, RRETHRSER, ERYSIRMIRE! "=EE: hRAEU T A, A
BREERER, "EME: 5=, (REAMTRK, B\MEE? TEE: EANRESHE, F
2AMh? =S (MEEERTG? MTEE: ‘BAR TNBLR, HSELRFXSE,
=%, HAEEE, R—NERREZE, SREGMHE. =& A LA
AEP? fT7EE: RE=H. "=EE: B, kiR, SIR=AZR. = HEREER;
E=HZIMSE, HERSEBEILET. MTEE: Bd, 8. 7

REMSEERRAE, HIPRYAE: SFEMD, TMEMRK. FAEFERFRNR, &
AR=FAR, FIRR, EOTEIL, SPNESRFURENK, SBIHIRA9RIEE. J\ ~
_ /g
<

35
Z

Figure 10. PAIC’s Answer to “Wukong” Counting Problem derived from an excerpt of Journey to The West(Wu, 1980).

16

Personal Autonomous Intelligence Computer

C. ChatGPT-4’s Responses Versus PAIC’s Responses for the Multi-Hop Reasoning-Based
Information Replacement Task

This section mainly describes the ChatGPT-4 and PAIC performance on the multi-hop reasoning-based information
replacement tasks.

As illustrated by the Figure 13, Figure 14, and the Figure 15, clearly, the answer from the earlier iteration of ChatGPT-4
neither met user requirements nor considered contextual logical conflicts. With a substantial amount of data being fed to
ChatGPT daily, newer versions may occasionally generate plausible answers after repeated queries.

However, when introducing a slight increase in complexity to the user query where four nodes are involved, a newer version
of ChatGPT-4 still struggled with logical inconsistencies between modified sentences and the original text. As depicted by
the Figure 11, the user intention is to change the interaction between “A” and “D” to “have breakfast”, which had been
satisfied by the ChatGPT-4’s answer. Nevertheless, one of the most illogical aspects is “A is having dinner and breakfast” at
the same time.

By contrast, referring to the Figure 12, the answer from our PAIC seems more reasonable, where each event or interaction
described in the sentences and their respective primary subjects objectively able to coexist simultaneously.

e N
Prompt: For the provided passage, under the condition that the original text is altered the least and logically, changing the

interaction between A and D to "have breakfast":

Provided Passage:

"A is having dinner with B. B is chatting on the phone with C. C is chatting with A. D is in a meeting with A. D is having dinner with
c."

ChatGPT-4 (1/2/2024) :
To alter the provided passage minimally and logically, while changing the interaction between A and D to "have breakfast", the
passage can be modified as follows:

"A is having dinner with B. B is chatting on the phone with C. C is chatting with A. D is having breakfast with A. D is having dinner
with C."

This change maintains the original structure and connections of the passage while integrating the specified interaction between A
L and D. J

Figure 11. Example 4: Changing the interaction between A and D to ’have breakfast”. Highlight in red represents the modification
made by the ChatGPT-4. Obviously, A is having dinner and breakfast at the same time, which exists the logical conflict in the time
domain.

For the provided passage, under the condition that the original text is altered the least and logically,
changing the interaction between A and D to "have breakfast":

Provided Passage:

"A is having dinner with B. B is chatting on the phone with C. C is chatting with A. D is in a meeting

with A. D is having dinner with C." l\ ~
L
A,

"A is planning dinner with B. B is chatting on the phone with C. C is chatting with A. D is having
breakfast with A. D is talking with C."

PAIC A

Figure 12. PAIC’s answer to the Example 4

17

Personal Autonomous Intelligence Computer

'a \
Prompt: For the provided passage, under the condition that the original text is altered the least and logically, changing the
interaction between A and C to "have breakfast":
Provided Passage:
"A is having dinner with B. B is chatting on the phone with C. C is chatting with A."
ChatGPT-4 (8/1/2024) :
To minimally and logically alter the provided passage to change the interaction between A and C to "have breakfast," the revised
passage would be:
"A is planning dinner with B. B is chatting on the phone with C. C is chatting with A."
|\ J

Figure 13. Example 1: Changing the interaction between A and C to have breakfast”. Highlight in red represents the modification
made by the ChatGPT-4. Obviously, the user’s intention is to change the interaction between “A” and “C” to “have breakfast”. But instead
of following the user requirement, ChatGPT-4 somehow changes the interaction between “A” and “B”

e N
Prompt: For the provided passage, under the condition that the original text is altered the least and logically, changing the
interaction between A and C to "jogging":

Provided Passage:
"A is having dinner with B. B is chatting on the phone with C. C is chatting with A."
ChatGPT-4 (8/1/2024) :
To modify the given passage with minimal alteration while changing the interaction between A and C to "jogging," the revised
passage would be:
"A is having dinner with B. B is chatting on the phone with C. C is jogging with A."
L This change maintains the original structure and interactions but alters the activity between A and C to jogging.)

Figure 14. Example 2: Changing the interaction between A and C to ”’jogging”. Highlight in red represents the modification made by
the ChatGPT-4. In the ChatGPT-4 response, A is depicted as both having dinner and jogging, presenting a spatial logical conflict.

Prompt: For the provided passage, under the condition that the original text is altered the least and logically, changing the
interaction between B and C to "jogging":

Provided Passage:

"A is having dinner with B. B is chatting on the phone with C. C is chatting with A."

ChatGPT-4 (8/1/2024) :
To alter the provided passage minimally while changing the interaction between B and C to "jogging," the revised passage could be:

"A is having dinner with B. B is jogging with C. C is chatting with A."
J

Figure 15. Example 3: Changing the interaction between B and C to ’jogging”. Highlight in red represents the modification made by the
ChatGPT-4. In the ChatGPT-4 response, B is depicted as both having dinner and jogging, presenting a spatial logical conflict.

18

Personal Autonomous Intelligence Computer

D. Minimum Execution Unit of kOS: Native ACT

k_message_send

LUl k_get act_request
k_time_cur_local_day_str
System

k_data_dehydration
k_semantic_chat — LLM
Language Model Meta Space k_meta_data_rehydration

Prompt

k_prompt_with_json_format
Computation kOS Native ACT

k_data_structure_equilibrium_recovery_recursion
Control Evaluation

k_web_get_page_content
Internet Netwrok
k_material_semantic_search
Knowledge Base

Storage

Figure 16. Native ACTs are composed of several essential modules, mainly including System, Computation, Network, LUI, Meta Space,
Control, and Storage

As shown by the Figure 16, our NACT set encompasses several essential capability modules, mainly including the LUI,
Meta Space, Control, Storage, System, Computation, and Network modules. The most critical modules within our NACT
set are modules LUI, Meta Space, Control, and Computation, collectively undertaking the core capability of precise data
manipulation following the user’s query. A more detailed and complete NACT list will be presented in Figure 20 to Figure 39,
and all the kOS data types we have set are listed in Figure 40 and Figure 41. We are constantly expanding and developing
new NACTs and data types to meet new needs.

More specifically, the NACTs from the LUI module are mainly in charge of interacting with the user. Such as, NACT
k_message_send(), designed for outputting the system response to the LUI, is executed in the IO Unit, which can be viewed
by the Figure 19. Invocation of NACT k_get_act_request() involves the collaboration between the 10 and the Processing
Units, which is designed for understanding the user intention via query deconstruction.

For the Meta Space module, it offers two NACTs, k_data_dehydration() and k_meta_data_rehydration(). The former is to
extract the structured data encompassing high-dimensional information from the given operable data object such as text,
image, etc. This structured data not only contains all explicit information but also encapsulates implicit logical reasoning
derived from the input raw data. The subsequent one is responsible for updating the outdated and irrational information
with new, rational data, forming new structured data which can meet the user requirements. These two NACTs involve
the invocation of the LLMs and the formulation of a series of complex logical rules, thereby, requiring the collaboration
between the Memory, Control, and Processing Units.

The Control module offers the evaluation-related NACT, k_data_structure_equilibrium_recovery_recursion(), which requires
parameter inputs the structured data and the user query-related information. Fundamentally, this NACT is to detect if there
are any logical inconsistencies within structured data when a piece of information is altered, assessing whether any conflicts
such as factual inaccuracies, temporal or spatial dimension discrepancies, and so on, arise between the modified data and
other related information. The LLM is employed as a judge for conflict detection. Hence, this NACT also relies on the
interaction between the Control and Processing Unit.

According to the Figure 16, the Computation module primarily offers the NACTs for the LLM invocation. For example,
NACT k_semantic_chat(), is designed to communicate with the LLM. Another NACT k_prompt_with_json_format() provides
a simple prompt that limits the output of LLM to JSON format. The execution of these two NACTs hinges on the Processing
Unit.

The remaining modules, System, Network, and Storage, primarily encompass NACT sets for basic system operations, web
functions, and storage tasks. These include k_time_cur_local_day_str() for local date retrieval, k_-web_get_page_data() for
extracting content from a provided web link, and k_material_semantic_search() for fetching information from the Storage
Unit based on user queries.

Furthermore, we also publish the System ACT (SACT) which is implemented through a series of logical operations based on
the pre-encapsulated NACTs, enabling more advanced capabilities. As depicted by the Figure 17, SACT webLinkSummarize()
is utilised to summarize the content from the input web link. The code implementation of this SACT can be viewed in the

19

Personal Autonomous Intelligence Computer

Figure 18. Similarly, users can follow the same paradigm, developing their own ACTs to meet their requirements. Such
ACTs are collectively referred to as ’Customized ACTs’.

20

Personal Autonomous Intelligence Computer

D.1. System ACT: webLinkSummarize()

[webLinkSummarize https://www.newsinlevels.com/products/2024-doomsday-clock-level-3/ E ~
L

~

([Abstract])

The article discusses how in 2024, the Doomsday Clock remains set at 90 seconds to
midnight, indicating the continuing global instability and highlighting key issues of concern. It
urges global leaders to take more decisive action to address these threats.

[Summary]

1.What are the key concerns of the Doomsday Clock, and why does the committee urge
global leaders to take more decisive action?

+ The Doomsday Clock points out that reasons for ongoing global instability include
Russia's ongoing war in Ukraine, actions following the October 7 attack by Israel,
proxy wars in the Middle East, stalled nuclear arms control negotiations,
insufficient progress on climate change, and increased risks from artificial
intelligence and emerging technologies. The committee urges global leaders to
take more decisive action to address these threats.

2.What are the key issues facing global leaders?

« The key issues facing global leaders include the potential for the U.S. to become
involved in wars in Israel and other Middle Eastern countries, climate change,
record-high temperatures, and challenges posed by artificial intelligence. The
committee calls on global leaders to take more decisive action to address these

issues.
@\)

Figure 17. Utilization Example of webLinkSummarize(), where the link is from (Eng, 2024)

21

Personal Autonomous Intelligence Computer

[from kOS import nact

def webLinkSummarize():
act_req = nact.k_get_act_request()
if not act_req or not act_req.msg_list:
nact.k_print('no msg found')
return

for msg in act_req.msg_list:
if msg.msg_type != nact.MsgType WEB_LINK:
continue

content: nact.KOSMsgWebLinkContent = msg.content
page_data: nact. KOSWebPageData = nact.k_except_wrapper(nact.k_web_get page_data, content.url)
if not page_data or not page_data.content:
nact.k_message_send('No valid text content was obtained from the web page!')
continue
summary = nact.k_semantic_summarize(page_data.content)
if nact.k_file_is_available():
time_str = nact.k_time_cur_local_day_str()
title = content.title
if not title:
title = page_data.title
if not title:
title = str(nact.k_time_cur_milliseconds())
title = title.replace('/', ")
file = nact.k_file_open(f'/webLinkSummarize/{time_str}_{title}.txt',
nact.FileOpenMode.OVERWRITE,
priority=nact.DataPriority.LOW, mount_type=nact.FileMountType.MATERIAL,
source=nact.FileSource.WEB_LINK, source_url=content.url,
summary=summary

)

nact.k_file_append(file, page_data.content)

if content.title:

send_text = f'Article: "{content.title}" is summarized as follows:\n{summary}'
else:

send_text = summary
nact.k_message_send(send_text)

webLinkSummarize()

-

Figure 18. Code Implementation of webLinkSummarize()

22

Personal Autonomous Intelligence Computer

D.2. NACT Example: k_message _send()

from kOS import nact

} hello! how are you doing?]

def main():

nact_k_message_send(“What would you like to eat for you breakfast? ;-”)) What would you like to eat for you breakfast? ;-]

PAIC

main()

\

I
I
I
nact_k_message_send(“hello! how are you doing?”) |
I
I
I

J

Figure 19. Demo of k_message_send()

23

Personal Autonomous Intelligence Computer

D.3. NACT Lists & Corresponding Data Types

LUI

k_message_build(msg_type: MsgType, text: str =", file: KOSFile = None) -> KOSMsg:
Description: Build a message object.
:param msg_type:
Message type, refer to MsgType, supports TEXT, IMAGE, VIDEO, FILE, other types will
return None
:param text:
Text content of text message
:param file:
Files for file type messages can be opened through k_file_open
‘return:

Return a message object, which can be used to send messages

k_message_send(content: Union[KOSFile, str, KOSMsg], content_ref_source:
KOSMsgContentRefSource = None):
Description: Send the input message to the user interface.
:param content:
Message content, supports text or file objects, other types will cause ACT to fail and exit.
:param content_ref_source:

The reference source of the message content,
k_ask_for_file() -> KOSFile:
Description: After several rounds of dialogue, ask the user to upload a file.

rreturn:

Returns the file object uploaded by the user

Figure 20. Native ACT list part 1

24

Personal Autonomous Intelligence Computer

k_ask_for_files(min_num: int, max_num: int) -> List[KOSFile]:

Description: After several rounds of dialogue, ask the user to upload files, such as asking users to
upload 2-5 files.

:param min_num:
Minimum number of files
;param max_num:

Maximum number of files

return:

Return a list of file objects uploaded by the user

k_ask_for_file_or_content() -> KOSMsg:

Description: After several rounds of dialogue, ask the user to upload a text file or provide text
content directly.

rreturn:

Return the message object of the text file or text content uploaded by the user, which type
can be determined by KOSMsg.msg_type

k_ask_for_answer(question: str) -> str:

Description: After several rounds of dialogue, ask the user to answer the relevant questions.
:param question:

rreturn:

Return the answer of user

k_get_act_request() -> KOSActRequest:

Description: Get the message content when ACT trigger is started.

rreturn:

Returns the message content when ACT trigger is started

Figure 21. Native ACT list part 2

25

Personal Autonomous Intelligence Computer

k_get_act_query() -> str:
Description: Get the message when ACT trigger is started.
:return:

Returns the message when ACT trigger is started

k_lui_ensure_act_query_and_file() -> Tuple[str, KOSFile, MsgType]:

Description: Get the input query of ACT and the text content file to be processed. This is usually
used when an ACT relies on query input, the text content to be processed, such as a modified ACT. Here,
the context of the query message triggered by ACT will be parsed from the KOSActRequest. The message
content will be used as the query, and the quotation part of the message will be used as the text to be
processed. If the text is not a file message, it will be converted into a KOSFile. If there is no corresponding
text content to be processed in KOSActRequest, the user will be asked to enter through multiple rounds
of dialogue.

rreturn:

query: user input requirement; KOSFile: the text content file to be processed; MsgType indicates

the type of the original message of the text content to be processed.

Meta Space

k_meta_space_open(data_access_mode: DataAccessMode = None) -> KOSMetaSpace:
Description: Open the user's metaspace. Each user has only one metaspace.
:param data_access_mode:
Data access mode
rreturn:

Metaspace object

Figure 22. Native ACT list part 3

26

Personal Autonomous Intelligence Computer

k_meta_space_build_query(query: str, data_access_mode: DataAccessMode = None) ->
KOSMetaSpaceQuery:
Description: Construct user query in metaspace
param query:
The original query string of user
:param data_access_mode:
Data access mode. If it is None, the global data access mode will be used (default is
user mode).
return:

Returns user query constructed in metaspace

k_data_dehydration(meta_space: KOSMetaSpace, file: KOSFile, meta_query: KOSMetaSpaceQuery)
-> KOSMetaSpace:
Description: Data dehydration. The file is descended and expanded into the metaspace, which
after the expansion will contain a collection of metadata objects corresponding to the file.
:param meta_space:
Metaspace object
:param file:
The file object that needs to be expanded
:param meta_query:
User's query, generated through k_meta_space_build_query
return:

Return this metaspace object

Figure 23. Native ACT list part 4

27

Personal Autonomous Intelligence Computer

k_meta_space_search(meta_space: KOSMetaSpace, meta_query: KOSMetaSpaceQuery, file:
KOSFile) -> KOSMetaSpaceSearchResult:
Description: Search in metaspace
:param meta_space.
Meta Space
:param meta_query.
Meta space user's query
:param file.
File object to search for metadata about the file
:return.

Returns the result object searched in the metaspace

k_meta_data_semantic_rephrase(data: KOSMetaData, meta_query: KOSMetaSpaceQuery) -> str:

Description: KOSMetaSpaceQuery) -> str.

Re-expressing metadata content based on semantics
:param data.

Metadata object
:param meta_query.

Meta space user's query
:return.

Returns the content after re-expression

k_meta_space_update_meta_data(meta_space: KOSMetaSpace, meta_data: KOSMetaData,
new_content: str):
Description: Update metadata content
:param meta_space.
Meta Space
:param meta_data.
Metadata object
:param new_content.

Returns the content to be updated

Figure 24. Native ACT list part 5

28

Personal Autonomous Intelligence Computer

k_meta_data_rehydration(meta_space: KOSMetaSpace, org_file: KOSFile, new_file: KOSFile) ->
KOSFile:
Description: Metadata Rehydration, which restores metadata from metaspace to text data
and saves it in a result file. The result file needs to be generated through k_file_open first
:param meta_space.
Meta space
:param org_file.
Original fil
:param new_file.
Generated file
‘return.

Returns this generated file

k_meta_data_get_text(meta_data: KOSMetaData) -> str:
Description: Get the text content of the metadata
:param meta_data:
Metadata object
rreturn:

Returns the text content of the metadata, or null if it is not text metadata.

k_meta_data_get_context(meta_data: KOSMetaData, offset: int) -> Tuple[List{(KOSMetaData],
List{fKOSMetaData]]:
Description: Get the list of metadata objects associated with the metadata object's context
:param meta_data:
Metadata object
:param offset:
The range of context metadata objects to get
rreturn:
Returns a tuple, the first element is a list of metadata objects from the previous

context, the second is a list of metadata objects from the following context

Figure 25. Native ACT list part 6

29

Personal Autonomous Intelligence Computer

Control

k_semantic_evaluate_input(input: str, scenario: str, requirements: str) -> bool:
Description: Evaluate whether the input given by the user meets the input requirements for
the particular scenario
:param input:
The input message of user
:param scenario:
The specified scenario
:param requirements:
Requirements for the input messages in this scenario
return:

Returns True if satisfied, False if not satisfied

k_semantic_confirm_input(input: str, scenario: str, requirements: str) -> str:
Description: Confirms whether the user input meets the input requirements for the particular
scenario, and if it does not, the user is asked to re-enter through the LUI
:param input:
The input message of user
:param scenario:
The specified scenario
param requirements:
Requirements for the input messages in this scenario
return.
Returns the user input that meets the input requirements in this scenario. If the
original user input already satisfies the original input, return the original input. Otherwise, the

user will be asked to re-enter

Figure 26. Native ACT list part 7

30

Personal Autonomous Intelligence Computer

File System

k_file_open(file_path: str, mode: FileOpenMode = FileOpenMode.READ,

priority: DataPriority = None, mount_type: FileMountType = FileMountType.NET_DISK,

source: FileSource = FileSource.ACT, source_url: str = None, summary: str = None,

auto_delete: bool = False, data_access_mode: DataAccessMode = None) -> KOSFile:

Description: Open a file

Note: Unlike opening a file in a traditional operating system, there is no need to close it after

opening.

:param file_path:
Absolute path to the file, e.g. /a/b/c/file.txt.

:param mode:
File open mode, the default is read-only mode, the type is FileOpenMode.

:param priority:
File priority, when the file is semantically parsed, this field will affect the file semantic

retrieval priority. Refer to DataPriority.

:param mount_type:
The type of file to be mounted.

param summary:
The summary of the document.

:param source:
The source of the document.

:param source_url:
The web url of the document's source.

:param auto_delete:
Automatically delete the file after the ACT has finished running. Typically used for tmp

file cleanup

:param data_access_mode:
Data access mode.

return:
Return the file object. In read-only mode, if the file does not exist, then return None.

In all other cases, the file object will be returned.

Figure 27. Native ACT list part 8

31

Personal Autonomous Intelligence Computer

k_file_delete(file: KOSFile):
Description: Delete a file
:param file:

File object to be deleted

k_file_append(file: KOSFile, content: str) -> KOSFile:
Description: Append content to an existing file
:param file:
The file object
:param content:
The content of the file to be appended
:return:
Returns a new file object containing the latest information about the file. If the file

does not exist, then return None; if you append to a file in read-only mode, the ACT fails and exits

k_file_read(file: KOSFile, offset: int = None, length: int = None) -> Tuple[int, str]:
Description: Read the contents of a file which supports specifying the offset and the length of
the read
:param file:
The file to be read
:param offset:
Offset of the file, in bytes. The default is 0
:param length:
Length of the file to be read, in bytes. Default means read all
return:

Returns the actual length of the read, in bytes, and the contents

Figure 28. Native ACT list part 9

32

Personal Autonomous Intelligence Computer

k_file_copy(src_file: KOSFile, dst_file: KOSFile, offset: int = None, length: int = None) -> int:
Description: Copy the file, append the copy of the contents specified by the src_file file to
dst_file
:param src_file:
Source file object
:param dst_file:
Destination file object
:param offset:
Offset of the source file position, in bytes, default starts from 0
:param length:
Read length in bytes, defaults to read as much as possible after offset, subject to
restrictions in k_file_append.
return:

Returns the length of the actual copy, in bytes

k_file_is_available() -> bool:

Description: Whether the current filesystem is available or not, the filesystem may not be
available when ACT is triggered in some scenarios. Therefore, if the ACT depends on the filesystem, it
should be judged by this NACT first.

:return.

True: the file system is available; False: the file system is not available.
k_file_get_filename(file_path: str) -> str:

Description: Get the filename of the file path, such as /a/c/c/hello.txt, return hello.txt

:param file_path.

The path of the file.
rreturn:
Returns the file name

Figure 29. Native ACT list part 10

33

Personal Autonomous Intelligence Computer

k_file_list(directory_path: str, mount_type: FileMountType = FileMountType.NET_DISK,
data_access_mode: DataAccessMode = None) -> List[KOSFile]:

Description: List the files in the specified directory, excluding subdirectories
:param directory_path.
Directory path
:param mount_type.
File mount type
:param data_access_mode.
Data access mode
return.

Return the list of files

k_file_exists(file_path: str, mount_type: FileMountType = FileMountType.NET_DISK,
data_access_mode: DataAccessMode = None) -> bool:

Description: Determine whether the file exists, directory paths are not supported
:param file_path.

The path of the file
:param mount_type.

File mount type. Defaults to mount on a network drive

:param data_access_mode.

Data access mode

rreturn.

True means it exists, False means it doesn't exist.

k_file_get_download_url(file: KOSFile) -> str:

Description: Get the download http url of the file

:param file.
File object

rreturn.

Returns the file download link

Figure 30. Native ACT list part 11

34

Personal Autonomous Intelligence Computer

Storage

k_material_semantic_search(query: str, priority: DataPriority = None, top_n: int = 5,file_id_list:
List[str] = None, data_access_mode: DataAccessMode = None) -> List[KOSMaterialData]:
Description: Semantically search the repository based on user query statements
:param query.
:param top_n.
:param priority.
Data priority
:param file_id_list.
Specifies a file range to search
:param data_access_mode.
Data access mode

rreturn.

Return a list of matched material data

k_material_search_by_tags(tags: List[str], priority: DataPriority = None, top_n: int =5,
data_access_mode: DataAccessMode = None) -> List[KOSMaterialData]:
Description: Search the database precisely by tag
:param priority.
Data priority
:param tags.
:param top_n.
:param data_access_mode.
Data access mode
:return.

Return a list of matched data

Figure 31. Native ACT list part 12

35

Personal Autonomous Intelligence Computer

k_material_update_tags(materia_data: KOSMaterialData, tags: List[str]):
Description: Updates the tags of a material data
:param materia_data:
:param tags:

return:

Computation

k_semantic_chat(prompt: str) -> str:
Description: Conduct a semantic dialogue similar to that with Large Language Models
:param prompt:
Prompt
‘return:

Conversation results

k_prompt_with_json_format(prompt: str, json_format: dict) -> str:
Description: Add a JSON output requirement to the prompt so that the dialogue result can be
parsed into a JSON object by k_prompt_parse_json_output
:param prompt:
The prompt to be enhanced
:param json_format:
A description of the JSON format to be output, e.g. {"result": "xxxx"

return:

Returns the enhanced prompt

k_prompt_parse_json_output(output: str) -> dict:
Description: Parse a JSON object from the dialogue result
:param output.
Conversation results
rreturn.
Parsed json object

Figure 32. Native ACT list part 13

36

Personal Autonomous Intelligence Computer

k_semantic_compute_feature(query: str) -> KOSFeature:
Description: Compute the feature attributes of the data
:param query:
Input text to be computed
rreturn:

The feature attribute to return

k_semantic_compute_tags(query: str, tags: List[str]) -> List[str]:
Description: Tag the input based on a qualified list of tags
:param query:
Input text
:param tags:
A restricted list of tags
:return:

The list of tags for this input text, or null if it doesn't match the qualified tags.

k_semantic_summarize(content: str, requirements: str = None) -> str:
Description: Summarise the content of the text and, if a request is provided, indicate that the
summary needs to be tailored to the user's requirements.
:param content.
Long text to be summarised
param requirements.
The user's requirements
:return.

Return the result of the summary

Figure 33. Native ACT list part 14

37

Personal Autonomous Intelligence Computer

k_semantic_analyse_file(file: KOSFile):
Description: Semantic understand a file and store the extracted semantics in the repository
:param file:

The file object to be semantically analysed

k_semantic_rephrase(demand: str, content: str, prev_context: str = ", next_context: str = ") -> str:
Description: Rewrite the content according to the request semantics, and for a clearer
understanding of the content, provide the context of that content
:param demand.
Rewrite the request
:param content.
Content to be rewritten
:param prev_context.
The previous context
:param next_context.
The following text
return.

Returns the rewritten content

Network

k_web_get_page_data(page_url: str) -> KOSWebPageData:
Description: Get the data of a web page
:param page_url:
Page url, must be http:// or https://
rreturn:

Returns the data of the web page

Figure 34. Native ACT list part 15

38

Personal Autonomous Intelligence Computer

k_web_get_page_content(page_url: str) -> str:
Description: Get the text content of a page
:param page_url:
Page url, must starting with http:// or https://
‘return:

Return the text content of the page

k_web_get_image_data(page_url: str) -> KOSWebIimageData:
Description: Get image data from the input url
:param page_url:
Page url containg image content, must starting with http:// or https://
‘return:

Return the image data object

k_web_search_and_summarize(keyword: str) -> str:
Description: Search the internet based on a keyword and summarise the returned search
results
:param keyword.
Search for keywords
return.
Return a summary of the search results. If it returns None, then nothing was searched

for

k_web_search(keyword: str) -> List[KOSWebSearchTopic]:
Description: Searches the internet based on a keyword and returns a list of search results
:param keyword.
Search keyword
‘return.

Return a list of search results. If None is returned, then nothing was searched for

Figure 35. Native ACT list part 16

39

Personal Autonomous Intelligence Computer

k_http_request(method: str, url: str, headers: dict = None, data: Any = None,
cookies: KOSHttpCookielar = None, timeout: float = None) -> KOSHttpResponse:
Description: Initiate an HTTP request. Support standard HTTP methods such as GET, POST, PUT,
etc., with an interface similar to Python's requests library.
:param method.
Method of the HTTP request
:param url.
The url of the request
:param headers.
Headers of the request, optional
:param data.
Content of the requested data, optional
:param cookies:
Cookies for the request, optional
:param timeout:
Timeout for the request, in seconds, optional
rreturn:

Returns the response to the request.

Access

k_auth_set_data_access_mode(data_access_mode: DataAccessMode):
Description: Sets the default data access mode for ACT
:param data_access_mode:

Data Access Mode

k_auth_get_data_access_mode() -> DataAccessMode:

Description: Get the default data access mode

Figure 36. Native ACT list part 17

40

Personal Autonomous Intelligence Computer

Concurrent

k_concurrent_create_executor() -> KOSConcurrentExecutor:

Description: Create concurrent task executor.

k_concurrent_create_batcher() -> KOSConcurrentBatcher:

Description: Create a concurrent batcher.

System

k_sleep(ms: int):
Description: Make the ACT sleep for a period of time.
:param ms:

Sleep time in milliseconds

k_print(output: str):

Description: APrints the output of the ACT to the user debug dialogue window. Format: ACT>>
2023-12-15 16:36:52 [95c4c7e56fb34a7dba85068088a3263d] hello world! Where [] in the log trace id,
when there is an ACT execution failure, you can send this id to the technical support staff
troubleshooting.

Note: This printout is only valid for debugging, and will be blocked after the official release.

:param output:

Output to be printed

k_assert(cond: bool, last_words: str = None):
Description: Asserts a condition and terminates ACT execution if False.
:param cond:
Condition to be asserted
:param last_words:

Last words to be sent to the user as a message if the assertion fails.

Figure 37. Native ACT list part 18

41

Personal Autonomous Intelligence Computer

k_time_cur_milliseconds() -> int:
Description: Get the current number of milliseconds
:return.

Ruturns current number of milliseconds

k_time_cur_seconds() -> int:
Description: Get the current number of seconds
:return.

Ruturns current number of seconds

k_time_cur_date_str(fmt: str = '%Y-%m-%d %H:%M:%S%z') -> str:
Description: Get current date string
:param fmt.
Get the current date string :param fmt.
:return.

Return the current date string

k_time_cur_local_date_str() -> str:
Description: Get the current local date string
return.

Return the current local date string

k_time_cur_local_day_str() -> str:
Description: Get local day string, e.g. 2023-12-28
:return.

Return the local day string

Figure 38. Native ACT list part 19

42

Personal Autonomous Intelligence Computer

k_error_wrapper(func, *args, **kwargs) -> Tuple[KOSError | None, Any]:
Description: Wraps a particular function call and will catch any exceptions for that function call,
ensuring that no exceptions are thrown. This is usually used when executing nact to ignore
exceptions during execution.
The function to call.
:param args.
Positional arguments to the function
:param kwargs.
Named parameters of the function
:return.

Return the return value of the function call, or None if an exception is raised

k_except_wrapper(func, *args, **kwargs):
Description: Wraps a function call and will catch any exceptions to that function call, ensuring
that no exceptions are thrown. Usually used in the execution of nact can be ignored during the
execution of exceptions.
:param func.
The function to call.
:param args.
Positional arguments to the function
:param kwargs.
Named parameters of the function
:return.

Returns the return value of the function call, or None if an exception was raised.

Figure 39. Native ACT list part 20

43

Personal Autonomous Intelligence Computer

LUI

MsgType: Message type constant

KOSActRequest: ACT message context request

KOSMsg: Message

KOSMsgSubscribeContent: Subscribe to message content
KOSMsgWebLinkContent: Web page link message content
MsgRefSourceType: Message content reference source
KOSMsgSubscribeContent: Subscribe to message content
KOSMsgWebContentRefSource: Message content reference source

MsgRefSourceType: Message content reference source type

Meta Space
MetaQueryAction: Metaspace data query type constant
MetaQueryResultType: Metaspace data query result type constant

KOSMetaSpace: Metaspace usually consists of a metadata collection after dimensionally expanding

user data
KOSMetaData: Metadata, high-dimensional data formed after dimensional expansion of user data
KOSMetaSpaceQuery: Metaspace user query

KOSMetaSpaceSubQuery: Metaspace user subquery. The user's query consists of one or more

subqueries

KOSMetaSpaceSearchResult: Meta space search results, meta_query consists of a set of subqueries,

each subquery corresponds to a search result

KOSMetaSpaceQueryResult: Search results for metaspace user query
KOSMetaSpaceQueryCountResult: Metaspace counting class result
KOSMetaSpaceQueryRawDataResult: Metaspace naked string class result

KOSMetaSpaceQueryMetaDataResult: Metaspace metadata class result

Figure 40. kOS data type list 1

44

Personal Autonomous Intelligence Computer

File System

DataPriority: Data priority, high-priority data will be retrieved first under the default search
FileMountType: File mount type

FileOpenMode: File open mode

FileSource: File content source

KOSFile: File object in a file system

Storage

KOSMaterialData: Database data. After semantic understanding of files, database data will be formed

and stored in the database

Network

KOSWebPageData: Web page data

KOSWebPageRichData: Web page rich text data

KOSWebSearchTopic: Internet search results, consisting of title, abstract, and source URL
KOSWebElement: The page element object.

KOSWebDriver: Web driver, which enables access to web pages through a headless browser
KOSHttpCookielarr: Cookie container for HTTP requests

KOSHttpResponse: HTTP response object

Access

DataAccessMode: Mode of accessing data

Concurrent

KOSConcurrentFuture: The future of task execution

System

KOSError: kOS standard error

Figure 41. kOS Data Type list 2

45

